精简眼科手术前常规检查:大数据时代的契机和挑战
摘要
手术前常规检查在临床诊疗中被广泛应用,但在一些低风险择期手术前对患者进行常规检查,对提高医疗质量并无帮助,反而降低了医疗效率,增加了医疗费用。为提高效率,一些地区、机构和专家学者陆续通过宣传教育、发表共识、制定指南等方式控制无指征术前常规检查,但效果仍依赖于执业者的重视程度和专业水平。大数据机器学习方法以其标准化、自动化的特点为解决这一问题提供了新的思路。在回顾已有研究的基础上,我们抽取2017至2019年在中山大学中山眼科中心进行眼科手术的3.4万名患者的病史和体格检查资料大数据,涵盖年龄、性别等口学信息,诊断、既往疾病等病史信息,视功能、入院时身体质量指数(BMI)等体格检查信息。并以此为基础使用机器学习方法预测术前胸部X线检查是否存在异常,受试者操作特性曲线(receiver operating characteristic curve,ROC)曲线下面积达到0.864,预测准确率可达到81.2%,对大数据机器学习精简术前常规检查的新方式进行了先期探索。